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Abstract. We consider a distribution of conductance fluctuations in quantum dots with single
channel leads and continuous level spectra, and demonstrate that it has a distinctly non-Gaussian
shape and strong dependence on time-reversal symmetry, in contrast to an almost Gaussian
distribution of conductances in a disordered metallic sample connected to a reservoir by broad
multichannel leads. In the absence of time-reversal symmetry, our results obtained within
the diagrammatic approach coincide with those derived within non-perturbative techniques. In
addition, we show that the distribution has log-normal tails for weak disorder, similar to the case
of broad leads, and that it becomes almost log-normal as the amount of disorder is increased
towards the Anderson transition.

Recently it has been shown that the conductance of clean quantum dots with point-like
external contacts (lead width ~ Ek;l, Whereh_k;1 is the Fermi wavelength) have non-
Gaussian distribution functions [1, 2]. Weak transmission through the contacts means that
the electrons typically spend more time in the system than that required to cross it so that the
energy level broadening due to inelastic processes in theydat,E. whereE, ~hD/L?,

is the Thouless energy. This inequality corresponds to the zero mode regime which allows
the use of non-perturbative techniques including random matrix theory [3] and the zero
dimensional supersymmetric model [4]. By contrast, it is known that the distribution
function of the conductance is mainly Gaussian [5] in a weakly disordepash sample
connected to a reservoir by broad external contacts of width ¢, where? is the elastic

mean free path. Inelastic scattering processes in the reservoir result in a level broadening
y ~ E..

In the present paper the aim is to determine the distribution function of a dirty quantum
dot with two point contacts (which allow a single transport channel). We will describe
the regime of continuous energy levejs> A, wherey is the broadening due to inelastic
scattering in the dot and is the mean level spacing. This overlaps with the supersymmetric
(SUSY) calculations [1] in the ergodic regima, < y < E.. While the SUSY approach
is valid also in the quantum regime, < A, a perturbative diagrammatic approach applied
below can also be used for 2> E.. In this case all diffusion modes contribute to the
conductance rather than a single homogeneous ‘zero’ mode which is the only mode taken
into account within the non-perturbative SUSY calculations. The conductance distribution
function also has a non-Gaussian shape for such a strong level broadening so that the non-
Gaussian shape is due to geometric factors, namely the point-like structure of contacts,
rather than due to the dominance of the zero mode. In addition, we will use a standard
renormalization group technique to consider the role of increasing disorder in the dot.

0953-8984/96/366719+10$19.50C) 1996 IOP Publishing Ltd 6719



6720 E McCann ad | V Lerner

Traditionally the conductance of a system with broad, spatially homogeneous contacts
is considered by means of the Kubo formula [6]. For a lead geometry which involves
spatially inhomogeneous currents, however, the conductance is often more conveniently
expressed via scattering probabilities using the LandaugtikBr formula [7]. In this
paper, we start by writing the conductance in terms of Green functions with the help of
the Landauer—Bttiker formula. Then we will determine the conductance distribution in the
case of a continuous energy levels spectryny; A, finding the moments of conductance
by diagrammatic perturbation expansion in the parametg¢rnn)~t. Finally we will use
an effective functional of the non-linear model as a framework for the renormalization
group analysis necessary to describe the dependence of the moments of conductance (and
thus of the distribution) on the disorder parameter. Following reference [5] we show that
the nth order moments are proportional for largéo expun?) (u is a certain parameter to
be specified later), which is characteristic of a distribution function having log-normal tails.
As the amount of disorder is increased towards the Anderson transition the conductance
distribution in the dot becomes almost entirely log-normal. Again, this is different from
the conductance distribution in the ensemble of samples with broad leads which is also
characterised by log-normal tails whose role is increasing with disorder, but remains mainly
Gaussian within the whole range of validity of the renormalization group analysis, even at
the threshold of the transition.

We consider weak coupling through the contacts from the disordered region to electron
reservoirs and we label probabilities for tunnelling through the contaats asda, which
are assumed to be constant. Following [1], the level broadening due to inelastic scattering
a (in units of the mean level spacing) is chosen for convenience to be greater than
a1 andap. SO we can writew = 27y /A, wherey is the total level broadening. We
will present a perturbative calculation both in the many mode regiyne; E., where
the relevant small parameter js' = (2r2E./A)~! (g is the average conductance of
an open sample in units @f/7h) and in the zero mode regiméy < y < E., where
the relevant small parameter és*. The calculation is not valid in the regiom < 1,
which was the main area of interest for previous zero mode calculations [1,2]. Since
we are modelling a disordered sample ang 1 (the level spectrum is continuous), we
do not include Coulomb blockade and electron—electron interaction effects. As a result,
the calculations are applicable to a disordered sample whose electronic charging energy is
negligible compared to the Thouless energy (i.e. with spatial dimensions larger than usual
guantum dots). However, the calculations are also applicable to quantum dots when the
gate voltage is such that the addition of a single electron does not change the total energy,
conduction occurs and disorder effects are relevant [8]. Note that a similar non-Gaussian
distribution of Coulomb blockade peak height fluctuations was found by Jalabal9],
and recent experiments [10] appear to be consistent with this prediction.

The framework for determination of the conductance is the Landaiigtik& formula
[7]. We use it in the following form [11]:

2

e
G= 2h Z (Tali? + Talii) (1)
ab

where the transmission coefficiefif,™ is the probability of transmission from the channel
labelled bya in the left (right) lead to the channel labelled byn the right (left) lead. The
conductance has been written explicitly in terms of transmission from thaneftrom the

right since this most symmetric form is required to consider the influence of broken time
reversal symmetry on the fluctuations of the conductance. The transmission coefficients
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Figure 1. Lowest order perturbational contributions to the mean conductance: (a) exponentially
small diagram forlr; — r2| > ¢, (b) dominant contribution.

may be related to Green’s functions by [11, 12]

T, = (thO)ZQ*(‘) (r1, 723 €) G~ Pz, 715 8), )
whereG* (G™) is a retarded (advanced) Green function aadr, are the positions of the
point contacts. In the entire energy interval of interest, ¢ < /7, the mean density of
statesyg is a constant and thEaL,fR) are energy independent so we will subsequently drop
the ¢ label = ¢/vr is the elastic scattering time).

Each point contact has a width ~ Ek;l which corresponds to a single channel only
so that the point-to-point conductandg, is obtained from the LandaueréBiker formula
(equation (1)) with only one term in the summation. Ensemble averaged cumulants of the
conductance({(G")), are given by

2

(G™) = [eh (Zt:)zz} ([GF (r1. 72) G (12, 7)) + G (12, P G (1, T2)]")). ©))

We consider the point contacts to be separated by a distance greater than the mean free path
so that|r; — 72| > £. In equation (3) spin is explicitly included with an extra prefactor of 2
and the ternmxiap represents the transmission probability through the contacts themselves.
Ensemble averaging in equation (3) is performed within the impurity diagram technique [13]
and it is convenient to use a representation in which slow diffusion modes are explicitly
separated from fast ‘ballistic’ ones [14]. Figure 1(b) shows the dominant contribution to the
mean conductance which contains one diffusion propagator (drawn as a wavy line which
corresponds to a ladder series in the conventional technique [13]). At each end of the
diffusion propagator there are two-sided ‘petal’ shapes which represent motion at ballistic
scales since the average Green functig® (r, r')) (drawn as edges of the petal) decay
as exg—|r — r'|/2¢). At the diffusive scale,R 2 ¢, the petals reduce to the constant
x2 = 2mvot. The choice of diagrams is dictated by the inequality — r»| > ¢. This
means that a diagram with external poimtsand r, connected solely by average Green
functions as in figure 1(a) is exponentially small.

The diffusion propagatoD(r, r’; w) can be represented at zero frequency by

1
OLdTZ

D(r,7;0) = > . explig - (r — )] Ei§(R) (4)
T 27 v m Dg?+y 2c?

where D = v2t/d is the diffusion constant and, for a closed system, the summation is
carried out over ally = 7n/L, wheren = (n1,...,ny) are non-negative integers. In

an open system inelastic scattering occurs in the leads and the summation is cut off at
low momentag ~ L~! where L is the system size. For the system with point contacts
the energy level broadening,, due to inelastic processes inside the dot is inserted ‘by
hands’ into equation (4). As a result, in the many mode regime, E., the summation
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in equation (4) may be approximated by an integration with cut-off at L;nl where the
inelastic scattering length;, = (D/y)Y2. This leads to

2 2\ g In(Liy/R) d=2
¢®) = @)D (RL,-n) Kera(R/Lun) 7 {(n/zgw wr —a=3

whereR = |r — 7', go ~ (er7)? ! is the dimensionless conductance of an open cube of
sizel, d = 2+ ¢ is the dimensionality of the dot, arki, is the modified Bessel function of
the third kind of ordewx. In the zero mode regime, « E., the summation in equation (4)

is dominated by thg = 0 term so that

(R~ a<EgA (5b)
o

which means that the diffusion propagator is independeiR,patial dimensionality, and
the degree of disorder.
Now the leading diagram for the mean conductance, shown in figure 1(b), can be
evaluated. Substituting, = 2w vt for the petals and (R) for the diffusion propagator,
one has
2

(G) = %alazz(m 6)

whereR > ¢ is the separation of the point contacts. The mean conductance is proportional
to ¢(R) and equation (& shows that in the zero mode regimg, < E., the mean
conductance depends on the level broadenindut not on the separation of the point
contacts, the dimensionality, or the degree of disorder. On the contrary, in the many mode
regime,y 2 E., the mean conductance depends on all these parameters via equajjon (5
since it is inversely proportional tgg it actually increases as the amount of disorder
increases.

In order to calculate the variance of the conductance, we consider the following
correlation function between the transmission coefficient from the single channgl at
to r, and the transmission coefficient from the single channel @b r;

62 o100

K(Ary, Ary) =2 —
(Ary, Arp) [h 21v0)2
We use the notatiothr; = r1 — r}, Ary = r, — 5, where|Ary|, |[Ary| <« €. The main
contribution toK is shown in figure 2(a). It has two square ‘Hikami’ boxgs, representing
motion at ballistic scales which are connected by two diffusion propagators, and it gives

2
} (GF (ri,m2) G (r2, 1) GF (ry, 1) G (73, 77) - (7)

2 2
K(Ary, Arp) = Z[eh (gj‘jj)z} Xa(AT1) xa(Arp) [D (=12 (8)
2
Xa(AT) = ‘ / G (k)G (k)€ dk )

To determine the behaviour & on length scale$Ar;|, |Ar;| < £ we need to evaluate
x4(Ar) accurately, rather than substituting it by constast(Ar) which is sufficient for
|Ar| > £. We find that

/ Gt (k)G (k) €F2Tdk

€/2
- (Zkfm> [H e ar +iar/20) + H ykr Ar = iAr/ZZ)} (10)
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Figure 2. Lowest order perturbational contributions to the correlation funckairy, Ar;):
(a) multi-channel correlations, (b) single-channel variance.

(@) (b)

Figure 3. Lowest order perturbational contributions to the fourth order correlation function. (a)
multi-channel correlations, (b) fourth cumulant of single channel conductance.

where H;” are Hankel functions. In three dimensions this gives

2 . .
e? ] |:s|n2(kFAr1) sirt(kp Ar) e(Ar1+Ar2)//K:|

1
K(Arqy, Arp) = é |:h051a2§(R) (kFArl)z (kpAr2)2

(11)

which corresponds, in the limitAr;| = 0, to the correlation function for optical speckle
patterns found in [15].

We find from equation (10) that4(0) = (27 ve7)? SO that, in the single channel limit
|AT1| = |ATo] = 0, we getK (0, 0) = (G)?/2. This corresponds to redrawing the diagram
with the external points; andr, exactly equal tor; andr;,, respectively, as shown in
figure 2(b). Note that although in each of the boxes in figure 2@@)r’ with accuracy up to
¢ (as the Green functions represented by the edges of boxes exponentially decrease at scale
£), such an accuracy would be insufficient for calculating the variance of the conductance
of the point-contact dot as the area of ordér! would includegg >> 1 channels.

The variance is found by ensemble averaging equation (3) fer 2. Since there is
symmetry arising from an overall exchange of spatial labels in any ensemble average, there
are only two distinct contributions to the variance arising from the expansion of equation (3).
The first term, 1512+ [7.X]2, is equal to the correlation functicki (0, 0) from equation (7)
contributed by the diagram in figure 2(b) containing two diffusion propagators. The second
term, I’ TR is contributed by a similar diagram containing two Cooperon propagators.
For broken time-reversal symmetry Cooperon diagrams are absent so that, overall, we get

(G?) = ;<G>2 (12)
where (G) is given in equation (6). The factgt in equation (12) corresponds to Dyson’s
orthogonal, unitary and symplectic ensemblgs= 1 in the presence of potential scattering
only, B = 2 in the presence of a finite magnetic field that breaks time-reversal symmetry
andp = 4 in the presence of weak spin—orbit scattering. Fet 1 the result equation (12)
is the well known large intensity fluctuations in speckle patterns [15].

In order to determine the distribution function, we need a general expression for the
main contribution to theith cumulant. The leading diagrams are a generalization of those
for the variancen = 2. Forn = 4, for example, figure 3(a) shows a diagram contributing to
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a correlation function between transmission coefficients from four different input channels
to four different output channels. It consists of two eight-sided Hikami boxes. By contrast,
figure 3(b) shows a contribution to the fourth cumulant of the single channel conductance
which has two ‘daisy’ vertices where each daisy consists of four petals. Similarly the leading
diagrams for the:th cumulant are a generalization of figure 3(b) with two daisy vertices,
where each daisy consists afpetals, which are connected laydiffusion or Cooperon
propagators. Each diagram gives a contribution(@f” and a factor of(n — 1)! arises
because of different ways of ordering thepropagators. Fog = 1 all the diagrams from

the expansion of equation (3) are present. Howevesfes 2 only the diagrams without
Cooperons remain i.e. those that arise frofif,]" or [TX]". There are in fact only two
such terms in the expansion for all valuesipfwhereas the total number of terms Is So

the relative number o = 2 terms is 22" = ==Y, As a result, the main contribution

to thenth cumulant is

n (n—21)! B
((G")) = V= (G)". (13)
This expression corresponds to the following distribution function
GF1 BG
G)=p’ ex [—} 14
1@ =855 &P~ 5 (14)

which is drawn in figure 4. Fo8 = 1 the distribution peaks at zero conductance, whereas for

B = 2 it peaks atG)/2. It has the same form as the distribution for level width fluctuations

of quantum dots in the resonance regime which was found in [9] based upbgpbthesis

that chaotic dynamics in the dot are described by random-matrix theory. The result obtained
here is based upon entirely microscopic calculations. Howevep fer2, it disagrees with

the result of microscopic calculations by Prigodih al [1] within the SUSY approach.

Their result forg = 2 is the same as oy = 1 result. This discrepancy arises from a
different original definition of the conductance. Had we defined cumulants as averages of
[T5]" only, we would have the same result as in reference [1], as one expects in the region
where both the exact zero-mode integration within the SUSY approach and straightforward
diagrammatics are equally applicable. However the conductance is defined [11,12] as the
sum of 75 and T equation (1). When time-reversal invariance is broken by a magnetic
field (i.e. for theg = 2 symmetry class), the left and right transmission coefficients are no
longer equal for a generic asymmetric dot. Thus cross-terms Tik§"[ 7 X]*~™ no longer
contribute to thenth moment of the conductance, producing the result different from the

B =1 case. This means that breaking time-reversal invariance suppresses small amplitudes
in the distribution (14) and increases the mean amplitude. This has already been noted by
Jalabertet al [9] and we refer to their paper for further discussion.

The distribution (14) is very simple but profoundly different from the conductance
distribution of an open system (with broad multi-channel external contacts). In the latter
case, the variance is universal (of ord€yh) [16,17], and higher moments are much
smaller than the variance so that the distribution is almost Gaussian [5]. The tails of this
distribution decrease, however, much slower than Gaussian tails. We will show that this is
also the case for the single-channel conductance distribution considered here. It is known
[5] that expressions for cumulants of the conductance of an open system found in the
lowest order of perturbation theory are not valid for > ¢;° ! where ¢, is the standard
weak-localization parametety = ¢ (R = ¢) (equation (&)). The reason is that the number
of additional diagrams containing closed diffusion loops which describe higher ordgy) (in
contributions to thexth cumulant increase so fast that itz rather than;y which takes
the place of the effective perturbation parameter. We have found that corrections in powers
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Figure 4. Point contact distribution function.

Figure 5. Lowest order ingp correction to the variance.

of ¢o also arise in the present case of the conductance fluctuations of a system with single
channel contacts. For example one such correction which consists of diffusion propagators
and contributes to the72; 7% term of the variance is shown in figure 5. Three similar
corrections containing Cooperon propagators also occur so that, for the vertex corrections
in the first power ofzy, we get((G?)) = (4/8%)(G)?¢o. Similarly for the nth cumulant

extra impurity ladders can be placedritr — 1) different places so that the corrections give

a series of terms in?¢y, not Zo. At large enoughs, this enhancement of corrections by a
factor n2 means that the ‘main’ contributions no longer dominate.

In order to find expressions for largecumulants we need to sum all the corrections in
powers of¢p which is not practical within the diagram technique. Instead the summation is
performed using the renormalization group procedure which is carried out in the framework
of an effective field theory, a non-linear model [18], where averaging over realizations
of disorder and averaging ovéast degrees of freedom are performed in the derivation of
the model. The averaging produces expressions fonthecumulant of the point contact
conductance in terms of functional derivatives with respect to a source Higld (for
notations see [5]),

1 _ 262 oy 2\ | L& 82
<<1_!G>> - (h(vao)281\72> [ntr(ahi(mmhi(m))] (ZIhD) ‘w:N:O (15)

where(Z[h]) is a generating functional,

_ /DQ exp—F[Q: h]

D=1 DQ exp—FiQ: o

F[Q:h] = F[Q] + F,[Q:;h].  (16)
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Here the functionalF[Q] is a modification of the standare model functional,

F[Q] = / d'r [”"OD Tr (VQ)  dlr — ”‘Z”’ Tr (AQ)} (17)

8

which takes account of the non-zero level broadenin@ee discussion after equation (4)).
The source field functional is

= m TV = m
AIQ:N = Y A7 =203, [Ty dt (19
m=1 m=1
with bare values of the chargés, given by
O _ 2m — 3! (19)
m m! '

The Hermitian matrixQ obeys the constraint®? = I, TrQ = 0. It may be represented

asQ = Q¥r, wherer, are quarternion units ano = {AB; ij; pp'} stands for a set of
additional matrix elements. The replica indice$B} run from 1 to N with the replica
condition N = 0 being applied to the final results, the loop indideg} label different
conductances in the product equation (15), and the indipg§ distinguish retarded and
advanced Green functions. These indices are required to eliminate terms in the perturbative
expansion of equation (15) which do not correspond to those in the standard diagram
technique. The matrix source fieldr) is chosen to be Hermitian with the followingp’
structure:

(0 0 n,
= (g, "&)oer (L3, T)en 0

High gradient vertices [5] are not included in the functional equation (17): although they
are involved in the renormalization of the charggs in equation (19) this could produce
only a change in preexponential factors irrelevant here.

The lowest order perturbational contribution to thils cumulant arises from the term
(F”[Q; h])2 in the expansion of equation (16). The vertg¥’[Q; h] containsn source
fields h(r) and thus corresponds to a Hikami box withexternal points such as those
in figure 2(a) for the variance and figure 3(a) for the fourth cumulant. This contribution
is proportional to(Y(?)2 and does not reproduce the exact numerical coefficient of the
diagram technique result, equation (13), for single channel contacts which arise from daisy
vertices with a single external point only (figure 2(b) for the variance and figure 3(b) for
the fourth cumulant). The reason is that the derivation ofcsthmodel involves averaging
over fast degrees of freedom so that it is insensitive to details on local length scales (of the
order of}ﬂcgl). Nevertheless the model accurately describes the behaviour of diffusive
degrees of freedom which are the relevant ones for what follows.

The renormalization group procedure allows effective summation of the higher order
perturbative corrections which are logarithmic i@.2 The net effect is to substitute
renormalized values of the charges for bare ones in the expressions obtained by the
perturbative expansion of equation (16) above. Results in higher dimensionalities can be
gualitatively obtained byl = 2 + ¢ expansion.

The source field functional above (equation (18)) is similar to the source field functional
describing fluctuations of the density of states which is renormalized in [5]. As a result of
the renormalization, the charges obey the following increase law

T, oc TOg*=m (21)
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where
w=1In ? —In(1—¢o) L. (22)
In the weak disorder limiz ~ ¢y <« 1, whereas in the vicinity of the Anderson transition
elnL/¢ L<L. (a)

“Tlnd-g/er L>=L. ()

Hereo is the physical (renormalized) conductivity at length sdalandoy is the classical
(bare) conductivity at length scale L. is the correlation length which diverges as
L. x (g0 — g.)~Y¢ in the vicinity of the Anderson transition poigh = g..

Substituting the renormalized charge in place of the bare charge in the leading
perturbative results we get

(G ~ (G e ™z (24)

This is valid for cumulants witle > u~! whereas the universal expression (equation (13))
is valid for n < u~Y/2. The exponential increase law for highcumulants (equation (24))

is similar to that of the local density of states [5,19] and it leads to log-normal tails of the
distribution function

1 1 .,/ 8G
f(G) 3G exp[ 8y In <4u(G)>j| 3G Z (G)/u (25)
whereéG = G — (G). For weak disorder ~ ¢y « 1 so the main part of the distribution is

due to the lows cumulants and it has an exponential shape (equation (14)). Some very large

n cumulants follow equation (24) and the exponential distribution will have log-normal tails
which appear for fluctuationsG = (G)/u.

As the amount of disorder increases thenincreases in magnitude, more of the
cumulants follow equation (24), and the log-normal tails become larger. Due to the condition
of validity of the high cumulant expression,> =1, the whole distribution will become
log-normal in the regiont ~ 1. This crossover from the exponential to the log-normal
distribution occurs before the Anderson transition i.e. still within the metallic regime, since
u = Inop/o thenu ~ 1 can occur fowy > o > 1. This is similar to local density of states
fluctuations [19] where a crossover from nearly Gaussian to completely log-normal occurs
in the metallic regime for ~ 1.

Note that the log-normal distribution for local fluctuations originally obtained by the
renormalization group treatment [5] has been rederived directly within the SUSY approach
[20]. Itis possible that the high gradient expansion (see note after equation (17)) corresponds
to probing the new inhomogeneous vacuum found in [20]. However the new approach is
applicable only to the weak disorder limit,~ ¢y, and could not describe the distribution
of the many channel conductance.

In summary, using diagrammatic perturbation expansion in the pararfetey)

y 2 A, we reproduced the exponential distribution of conductance fluctuations in quantum
dots with two single channel leads [1] in the zero mode regime< y < E., and

we demonstrated strong dependence on time-reversal symmetry. We have shown that the
distribution has the same shape in the many mode regimg, E., but, in contrast to

the zero mode regime, the mean and the variance are dependent on the spatial dimension,
the degree of disorder, and the separation of the leads. Using the renormalization group
procedure we have shown that the exponential distribution has log-normal tails in both of the
above regimes. As disorder increases, the log-normal asymptotics become more important
and eventually there will be a crossover to a completely log-normal distribution.

(23)




6728 E McCann ad | V Lerner
Acknowledgments

We are grateful to Y Gefen, V E Kravtsov@m® A Smith for useful discussions. This work
was supported by EPSRC grant GR/J35238.

References

[1] Prigodin V N, Efetov K B and lida S 1993hys. Rev. Lett.71 1230
[2] Jalabert R A, Pichard J-L and Beenakkea W J 1994 Europhys. Lett27 255
[3] Mehta M L 1991 Random MatricegNew York: Academic)
[4] Efetov K B 1983 Adv. Phys32 53
[5] Altshuler B L, Kravtsy V E and Lerne | V 1991 Mesoscopic Phenomena in Solied B L Altshuler, P A
Lee and R A Webl{Amsterdam: Elsevier)
[6] Kubo R 1957J. Phys. Soc. Japarl2 570
[7] Landauer R 197@hil. Mag. 21 863
Buttiker M 1986Phys. Rev. Lett.57 1761
[8] Fal'ko V I and Efetw K B 1994 Phys. Rev.B 50 11267
[9] Jalabert R A, Stoa A D and Alhassid Y 199Phys. Rev. Lett.68 3468
[10] Chang A M, Baranger H U, Pfeiffer L N, We& W and Chag T Y 1996 Phys. Rev. Lett.76 1695
Folk J A, Patel S R, Godijn S F, Huibers A G, Cronenwett S M, Marcus C M, Campman K and Gossard A
C 1996Phys. Rev. Lett.76 1699
[11] Fishe D S and Lee P A 198Phys. Rev.B 23 6851
[12] Feng S, Kane C, leP A and Stoa A D 1988Phys. Rev. Lett.61 834
[13] Abrikosov A A, Gor'kov L P and Dzyaloshinskil Y 1965 Quantum Field Theoretical Methods in Statistical
Physics(Oxford: Pergamon)
[14] Gor’kov L P, Larkin A | and Khmel'nitski D E 1979JETP Lett.30 229
Hikami S 1981Phys. Rev.B 24 2671
[15] Shapiro B 1986Phys. Rev. Lett57 2168
[16] Altshuler B L 1985JETP Lett.41 648
[17] Lee P A and Stoa A D 1985Phys. Rev. Lett55 1622
[18] Wegner F 197Z. Phys. B 35 207
Efetov K B, Larkn A | and Kheml'nitski D E 1980 Sov. Phys.—JETB2 568
[19] Lerneg | V 1988 Phys. Lett.133A 253
[20] Muzykantski B A and Khmelnitski D E 1995Phys. Rev.B 51 5480
Efetov K B and Fal'lo V | 1995 Phys. Rev.B 52 17413



