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Abstract. We consider a distribution of conductance fluctuations in quantum dots with single
channel leads and continuous level spectra, and demonstrate that it has a distinctly non-Gaussian
shape and strong dependence on time-reversal symmetry, in contrast to an almost Gaussian
distribution of conductances in a disordered metallic sample connected to a reservoir by broad
multichannel leads. In the absence of time-reversal symmetry, our results obtained within
the diagrammatic approach coincide with those derived within non-perturbative techniques. In
addition, we show that the distribution has log-normal tails for weak disorder, similar to the case
of broad leads, and that it becomes almost log-normal as the amount of disorder is increased
towards the Anderson transition.

Recently it has been shown that the conductance of clean quantum dots with point-like
external contacts (lead widthw ≈ h̄k−1

F , whereh̄k−1
F is the Fermi wavelength) have non-

Gaussian distribution functions [1, 2]. Weak transmission through the contacts means that
the electrons typically spend more time in the system than that required to cross it so that the
energy level broadening due to inelastic processes in the dot,γ � Ec whereEc ≈ h̄D/L2,
is the Thouless energy. This inequality corresponds to the zero mode regime which allows
the use of non-perturbative techniques including random matrix theory [3] and the zero
dimensional supersymmetricσ model [4]. By contrast, it is known that the distribution
function of the conductance is mainly Gaussian [5] in a weakly disorderedopen sample
connected to a reservoir by broad external contacts of widthw > `, where` is the elastic
mean free path. Inelastic scattering processes in the reservoir result in a level broadening
γ ∼ Ec.

In the present paper the aim is to determine the distribution function of a dirty quantum
dot with two point contacts (which allow a single transport channel). We will describe
the regime of continuous energy levels,γ & 1, whereγ is the broadening due to inelastic
scattering in the dot and1 is the mean level spacing. This overlaps with the supersymmetric
(SUSY) calculations [1] in the ergodic regime,1 . γ < Ec. While the SUSY approach
is valid also in the quantum regime,γ < 1, a perturbative diagrammatic approach applied
below can also be used forγ & Ec. In this case all diffusion modes contribute to the
conductance rather than a single homogeneous ‘zero’ mode which is the only mode taken
into account within the non-perturbative SUSY calculations. The conductance distribution
function also has a non-Gaussian shape for such a strong level broadening so that the non-
Gaussian shape is due to geometric factors, namely the point-like structure of contacts,
rather than due to the dominance of the zero mode. In addition, we will use a standard
renormalization group technique to consider the role of increasing disorder in the dot.
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Traditionally the conductance of a system with broad, spatially homogeneous contacts
is considered by means of the Kubo formula [6]. For a lead geometry which involves
spatially inhomogeneous currents, however, the conductance is often more conveniently
expressed via scattering probabilities using the Landauer–Büttiker formula [7]. In this
paper, we start by writing the conductance in terms of Green functions with the help of
the Landauer–B̈uttiker formula. Then we will determine the conductance distribution in the
case of a continuous energy levels spectrum,γ & 1, finding the moments of conductance
by diagrammatic perturbation expansion in the parameter(γ /1)−1. Finally we will use
an effective functional of the non-linearσ model as a framework for the renormalization
group analysis necessary to describe the dependence of the moments of conductance (and
thus of the distribution) on the disorder parameter. Following reference [5] we show that
the nth order moments are proportional for largen to exp(un2) (u is a certain parameter to
be specified later), which is characteristic of a distribution function having log-normal tails.
As the amount of disorder is increased towards the Anderson transition the conductance
distribution in the dot becomes almost entirely log-normal. Again, this is different from
the conductance distribution in the ensemble of samples with broad leads which is also
characterised by log-normal tails whose role is increasing with disorder, but remains mainly
Gaussian within the whole range of validity of the renormalization group analysis, even at
the threshold of the transition.

We consider weak coupling through the contacts from the disordered region to electron
reservoirs and we label probabilities for tunnelling through the contacts asα1 andα2 which
are assumed to be constant. Following [1], the level broadening due to inelastic scattering
α (in units of the mean level spacing1) is chosen for convenience to be greater than
α1 and α2. So we can writeα = 2π2γ /1, whereγ is the total level broadening. We
will present a perturbative calculation both in the many mode regime,γ & Ec, where
the relevant small parameter isg−1 = (2π2Ec/1)−1 (g is the average conductance of
an open sample in units ofe2/πh) and in the zero mode regime,1 . γ < Ec, where
the relevant small parameter isα−1. The calculation is not valid in the regionα < 1,
which was the main area of interest for previous zero mode calculations [1, 2]. Since
we are modelling a disordered sample andα & 1 (the level spectrum is continuous), we
do not include Coulomb blockade and electron–electron interaction effects. As a result,
the calculations are applicable to a disordered sample whose electronic charging energy is
negligible compared to the Thouless energy (i.e. with spatial dimensions larger than usual
quantum dots). However, the calculations are also applicable to quantum dots when the
gate voltage is such that the addition of a single electron does not change the total energy,
conduction occurs and disorder effects are relevant [8]. Note that a similar non-Gaussian
distribution of Coulomb blockade peak height fluctuations was found by Jalabertet al [9],
and recent experiments [10] appear to be consistent with this prediction.

The framework for determination of the conductance is the Landauer–Büttiker formula
[7]. We use it in the following form [11]:

G = e2

2h

∑
ab

(
T L

ab + T R
ab

)
(1)

where the transmission coefficientT
L(R)
ab is the probability of transmission from the channel

labelled bya in the left (right) lead to the channel labelled byb in the right (left) lead. The
conductance has been written explicitly in terms of transmission from the leftand from the
right since this most symmetric form is required to consider the influence of broken time
reversal symmetry on the fluctuations of the conductance. The transmission coefficients
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Figure 1. Lowest order perturbational contributions to the mean conductance: (a) exponentially
small diagram for|r1 − r2| � `, (b) dominant contribution.

may be related to Green’s functions by [11, 12]

T
L(R)
ab = 1

(hν0)2
G+(−) (r1, r2; ε) G−(+)(r2, r1; ε), (2)

whereG+ (G−) is a retarded (advanced) Green function andr1, r2 are the positions of the
point contacts. In the entire energy interval of interest,ε − εF . h̄/τ , the mean density of
statesν0 is a constant and theT L(R)

ab are energy independent so we will subsequently drop
the ε label (τ = `/vF is the elastic scattering time).

Each point contact has a widthw ≈ h̄k−1
F which corresponds to a single channel only

so that the point-to-point conductance,G, is obtained from the Landauer–Büttiker formula
(equation (1)) with only one term in the summation. Ensemble averaged cumulants of the
conductance,〈〈Gn〉〉, are given by

〈〈Gn〉〉 =
[
e2

h

α1α2

(hν0)2

]n

〈〈[G+ (r1, r2) G− (r2, r1) + G+ (r2, r1) G− (r1, r2)
]n〉〉. (3)

We consider the point contacts to be separated by a distance greater than the mean free path
so that|r1 − r2| � `. In equation (3) spin is explicitly included with an extra prefactor of 2
and the termα1α2 represents the transmission probability through the contacts themselves.
Ensemble averaging in equation (3) is performed within the impurity diagram technique [13]
and it is convenient to use a representation in which slow diffusion modes are explicitly
separated from fast ‘ballistic’ ones [14]. Figure 1(b) shows the dominant contribution to the
mean conductance which contains one diffusion propagator (drawn as a wavy line which
corresponds to a ladder series in the conventional technique [13]). At each end of the
diffusion propagator there are two-sided ‘petal’ shapes which represent motion at ballistic
scales since the average Green functions〈GR,A(r, r′)〉 (drawn as edges of the petal) decay
as exp(−|r − r′|/2`). At the diffusive scale,R & `, the petals reduce to the constant
χ2 = 2πν0τ . The choice of diagrams is dictated by the inequality|r1 − r2| � `. This
means that a diagram with external pointsr1 and r2 connected solely by average Green
functions as in figure 1(a) is exponentially small.

The diffusion propagatorD(r, r′; ω) can be represented at zero frequency by

D(r, r′; 0) = 1

2πν0Ldτ 2

∑
q

1

Dq2 + γ
exp[iq · (r − r′)] ≡ 1

2τ 2
ζ(R) (4)

where D = v2
F τ/d is the diffusion constant and, for a closed system, the summation is

carried out over allq = πn/L, wheren = (n1, . . . , nd) are non-negative integers. In
an open system inelastic scattering occurs in the leads and the summation is cut off at
low momentaq ∼ L−1 whereL is the system size. For the system with point contacts
the energy level broadening,γ , due to inelastic processes inside the dot is inserted ‘by
hands’ into equation (4). As a result, in the many mode regime,γ & Ec, the summation
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in equation (4) may be approximated by an integration with cut-off atq ∼ L−1
in where the

inelastic scattering lengthLin = (D/γ )1/2. This leads to

ζ(R) = 2

(4π)d/2πν0D

(
2

RLin

)ε/2

Kε/2(R/Lin) ≈
{

g−1
0 ln(Lin/R) d = 2

(π/2g0) (`/R) d = 3
. (5a)

whereR = |r − r′|, g0 ∼ (εF τ)d−1 is the dimensionless conductance of an open cube of
size`, d = 2+ ε is the dimensionality of the dot, andKα is the modified Bessel function of
the third kind of orderα. In the zero mode regime,γ � Ec, the summation in equation (4)
is dominated by theq = 0 term so that

ζ(R) ≈ 2π

α
α < Ec/1 (5b)

which means that the diffusion propagator is independent ofR, spatial dimensionality, and
the degree of disorder.

Now the leading diagram for the mean conductance, shown in figure 1(b), can be
evaluated. Substitutingχ2 = 2πν0τ for the petals andζ(R) for the diffusion propagator,
one has

〈G〉 = e2

h
α1α2 ζ(R) (6)

whereR � ` is the separation of the point contacts. The mean conductance is proportional
to ζ(R) and equation (5b) shows that in the zero mode regime,γ < Ec, the mean
conductance depends on the level broadeningγ , but not on the separation of the point
contacts, the dimensionality, or the degree of disorder. On the contrary, in the many mode
regime,γ & Ec, the mean conductance depends on all these parameters via equation (5a);
since it is inversely proportional tog0 it actually increases as the amount of disorder
increases.

In order to calculate the variance of the conductance, we consider the following
correlation function between the transmission coefficient from the single channel atr1

to r2 and the transmission coefficient from the single channel atr′
1 to r′

2;

K(1r1, 1r2) = 2

[
e2

h

α1α2

(2πν0)2

]2

〈〈G+ (r1, r2) G− (r2, r1) G+ (
r′

1, r
′
2

) G− (
r′

2, r
′
1

)
. (7)

We use the notation1r1 = r1 − r′
1, 1r2 = r2 − r′

2, where|1r1|, |1r2| � `. The main
contribution toK is shown in figure 2(a). It has two square ‘Hikami’ boxes,χ4, representing
motion at ballistic scales which are connected by two diffusion propagators, and it gives

K(1r1, 1r2) = 2

[
e2

h

α1α2

(2πν0)2

]2

χ4(1r1) χ4(1r2) [D (r1 − r2)]
2 (8)

χ4(1r) =
∣∣∣∣∫ G+ (k) G− (k) eik.1r dk

∣∣∣∣2

. (9)

To determine the behaviour ofK on length scales|1r1|, |1r2| � ` we need to evaluate
χ4(1r) accurately, rather than substituting it by constant×δ(1r) which is sufficient for
|1r| � `. We find that∫

G+ (k) G− (k) eik.1rdk

= πν0τ

(
π

2kF 1r

)ε/2[
H

(1)

ε/2

(
kF 1r + i1r/2`

) + H
(2)

ε/2(kF 1r − i1r/2`)

]
(10)
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Figure 2. Lowest order perturbational contributions to the correlation functionK(1r1, 1r2):
(a) multi-channel correlations, (b) single-channel variance.

Figure 3. Lowest order perturbational contributions to the fourth order correlation function. (a)
multi-channel correlations, (b) fourth cumulant of single channel conductance.

whereH
(1,2)

ε/2 are Hankel functions. In three dimensions this gives

K(1r1, 1r2) = 1

2

[
e2

h
α1α2ζ(R)

]2
[

sin2(kF 1r1)

(kF 1r1)2

sin2(kF 1r2)

(kF 1r2)2
e−(1r1+1r2)/`

]
(11)

which corresponds, in the limit|1r1| = 0, to the correlation function for optical speckle
patterns found in [15].

We find from equation (10) thatχ4(0) = (2πν0τ)2 so that, in the single channel limit
|1r1| = |1r2| = 0, we getK(0, 0) = 〈G〉2/2. This corresponds to redrawing the diagram
with the external pointsr′

1 and r′
2 exactly equal tor1 and r2, respectively, as shown in

figure 2(b). Note that although in each of the boxes in figure 2(a)r ≈ r′ with accuracy up to
` (as the Green functions represented by the edges of boxes exponentially decrease at scale
`), such an accuracy would be insufficient for calculating the variance of the conductance
of the point-contact dot as the area of order`d−1 would includeg0 � 1 channels.

The variance is found by ensemble averaging equation (3) forn = 2. Since there is
symmetry arising from an overall exchange of spatial labels in any ensemble average, there
are only two distinct contributions to the variance arising from the expansion of equation (3).
The first term, [T L

ab]2 + [T R
ab]2, is equal to the correlation functionK(0, 0) from equation (7)

contributed by the diagram in figure 2(b) containing two diffusion propagators. The second
term, 2T L

abT
R
ab, is contributed by a similar diagram containing two Cooperon propagators.

For broken time-reversal symmetry Cooperon diagrams are absent so that, overall, we get

〈〈G2〉〉 = 1

β
〈G〉2 (12)

where〈G〉 is given in equation (6). The factorβ in equation (12) corresponds to Dyson’s
orthogonal, unitary and symplectic ensembles:β = 1 in the presence of potential scattering
only, β = 2 in the presence of a finite magnetic field that breaks time-reversal symmetry
andβ = 4 in the presence of weak spin–orbit scattering. Forβ = 1 the result equation (12)
is the well known large intensity fluctuations in speckle patterns [15].

In order to determine the distribution function, we need a general expression for the
main contribution to thenth cumulant. The leading diagrams are a generalization of those
for the variance,n = 2. Forn = 4, for example, figure 3(a) shows a diagram contributing to
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a correlation function between transmission coefficients from four different input channels
to four different output channels. It consists of two eight-sided Hikami boxes. By contrast,
figure 3(b) shows a contribution to the fourth cumulant of the single channel conductance
which has two ‘daisy’ vertices where each daisy consists of four petals. Similarly the leading
diagrams for thenth cumulant are a generalization of figure 3(b) with two daisy vertices,
where each daisy consists ofn petals, which are connected byn diffusion or Cooperon
propagators. Each diagram gives a contribution of〈G〉n and a factor of(n − 1)! arises
because of different ways of ordering then propagators. Forβ = 1 all the diagrams from
the expansion of equation (3) are present. However forβ = 2 only the diagrams without
Cooperons remain i.e. those that arise from [T L

ab]n or [T R
ab]n. There are in fact only two

such terms in the expansion for all values ofn, whereas the total number of terms is 2n. So
the relative number ofβ = 2 terms is 2/2n ≡ β−(n−1). As a result, the main contribution
to thenth cumulant is

〈〈Gn〉〉 = (n − 1)!

β(n−1)
〈G〉n. (13)

This expression corresponds to the following distribution function

f (G) = ββ Gβ−1

〈G〉β exp

[
− βG

〈G〉
]

(14)

which is drawn in figure 4. Forβ = 1 the distribution peaks at zero conductance, whereas for
β = 2 it peaks at〈G〉/2. It has the same form as the distribution for level width fluctuations
of quantum dots in the resonance regime which was found in [9] based upon thehypothesis
that chaotic dynamics in the dot are described by random-matrix theory. The result obtained
here is based upon entirely microscopic calculations. However, forβ = 2, it disagrees with
the result of microscopic calculations by Prigodinet al [1] within the SUSY approach.
Their result forβ = 2 is the same as ourβ = 1 result. This discrepancy arises from a
different original definition of the conductance. Had we defined cumulants as averages of
[T L

ab]n only, we would have the same result as in reference [1], as one expects in the region
where both the exact zero-mode integration within the SUSY approach and straightforward
diagrammatics are equally applicable. However the conductance is defined [11, 12] as the
sum ofT L

ab andT R
ab equation (1). When time-reversal invariance is broken by a magnetic

field (i.e. for theβ = 2 symmetry class), the left and right transmission coefficients are no
longer equal for a generic asymmetric dot. Thus cross-terms like [T L]m[T R]n−m no longer
contribute to thenth moment of the conductance, producing the result different from the
β = 1 case. This means that breaking time-reversal invariance suppresses small amplitudes
in the distribution (14) and increases the mean amplitude. This has already been noted by
Jalabertet al [9] and we refer to their paper for further discussion.

The distribution (14) is very simple but profoundly different from the conductance
distribution of an open system (with broad multi-channel external contacts). In the latter
case, the variance is universal (of ordere2/h̄) [16, 17], and higher moments are much
smaller than the variance so that the distribution is almost Gaussian [5]. The tails of this
distribution decrease, however, much slower than Gaussian tails. We will show that this is
also the case for the single-channel conductance distribution considered here. It is known
[5] that expressions for cumulants of the conductance of an open system found in the
lowest order of perturbation theory are not valid forn2 & ζ−1

0 where ζ0 is the standard
weak-localization parameter:ζ0 ≡ ζ(R = `) (equation (5a)). The reason is that the number
of additional diagrams containing closed diffusion loops which describe higher order (inζ0)
contributions to thenth cumulant increase so fast that it isn2ζ0 rather thanζ0 which takes
the place of the effective perturbation parameter. We have found that corrections in powers
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Figure 4. Point contact distribution function.

Figure 5. Lowest order inζ0 correction to the variance.

of ζ0 also arise in the present case of the conductance fluctuations of a system with single
channel contacts. For example one such correction which consists of diffusion propagators
and contributes to the 2T L

abT
R
ab term of the variance is shown in figure 5. Three similar

corrections containing Cooperon propagators also occur so that, for the vertex corrections
in the first power ofζ0, we get〈〈G2〉〉 = (4/β2)〈G〉2ζ0. Similarly for the nth cumulant
extra impurity ladders can be placed inn(n−1) different places so that the corrections give
a series of terms inn2ζ0, not ζ0. At large enoughn, this enhancement of corrections by a
factor n2 means that the ‘main’ contributions no longer dominate.

In order to find expressions for largen cumulants we need to sum all the corrections in
powers ofζ0 which is not practical within the diagram technique. Instead the summation is
performed using the renormalization group procedure which is carried out in the framework
of an effective field theory, a non-linearσ model [18], where averaging over realizations
of disorder and averaging overfast degrees of freedom are performed in the derivation of
the model. The averaging produces expressions for thenth cumulant of the point contact
conductance in terms of functional derivatives with respect to a source fieldh(r) (for
notations see [5]),〈〈 n∏

i=1

Gi

〉〉
=

(
2e2

h

α1α2

(2πν0)2

τ 2

8N2

)n
[

n∏
i=1

tr

(
δ2

δhi (r1)δhi (r2)

)]
〈Z[h]〉

∣∣∣
ω=N=0

(15)

where〈Z[h]〉 is a generating functional,

〈Z[h]〉 =
∫ DQ exp−F [Q; h]∫ DQ exp−F [Q; 0]

F [Q; h] = F [Q] + Fh[Q; h]. (16)
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Here the functionalF [Q] is a modification of the standardσ model functional,

F [Q] =
∫

ddr

[
πν0D

8
Tr

(∇Q
)2

ddr − πν0γ

4
Tr

(
3Q

)]
(17)

which takes account of the non-zero level broadeningγ (see discussion after equation (4)).
The source field functional is

Fh[Q; h] =
∞∑

m=1

F
(m)
h [Q; h] = πν0

2τ

∞∑
m=1

ϒm

∫
Tr(hQ)m ddr (18)

with bare values of the chargesϒm given by

ϒ(0)
m = (2m − 3)!!

m!
. (19)

The Hermitian matrixQ obeys the constraintsQ2 = I , TrQ = 0. It may be represented
as Q = Qµ

ν τµ where τµ are quarternion units andν = {AB; ij ; pp′} stands for a set of
additional matrix elements. The replica indices{AB} run from 1 to N with the replica
condition N = 0 being applied to the final results, the loop indices{ij} label different
conductances in the product equation (15), and the indices{pp′} distinguish retarded and
advanced Green functions. These indices are required to eliminate terms in the perturbative
expansion of equation (15) which do not correspond to those in the standard diagram
technique. The matrix source fieldh(r) is chosen to be Hermitian with the followingpp′

structure:

h ≡
(

0 h0
AB

h0
BA 0

)
⊗ τ0 +

(
0 h3

AB

−h3
BA 0

)
⊗ τ3 . (20)

High gradient vertices [5] are not included in the functional equation (17): although they
are involved in the renormalization of the chargesϒm in equation (19) this could produce
only a change in preexponential factors irrelevant here.

The lowest order perturbational contribution to thenth cumulant arises from the term
(F

(n)
h [Q; h])2 in the expansion of equation (16). The vertexF

(n)
h [Q; h] containsn source

fields h(r) and thus corresponds to a Hikami box withn external points such as those
in figure 2(a) for the variance and figure 3(a) for the fourth cumulant. This contribution
is proportional to(ϒ(0)

n )2 and does not reproduce the exact numerical coefficient of the
diagram technique result, equation (13), for single channel contacts which arise from daisy
vertices with a single external point only (figure 2(b) for the variance and figure 3(b) for
the fourth cumulant). The reason is that the derivation of theσ model involves averaging
over fast degrees of freedom so that it is insensitive to details on local length scales (of the
order of h̄k−1

F ). Nevertheless theσ model accurately describes the behaviour of diffusive
degrees of freedom which are the relevant ones for what follows.

The renormalization group procedure allows effective summation of the higher order
perturbative corrections which are logarithmic in 2d. The net effect is to substitute
renormalized values of the charges for bare ones in the expressions obtained by the
perturbative expansion of equation (16) above. Results in higher dimensionalities can be
qualitatively obtained byd = 2 + ε expansion.

The source field functional above (equation (18)) is similar to the source field functional
describing fluctuations of the density of states which is renormalized in [5]. As a result of
the renormalization, the charges obey the following increase law

ϒn ∝ ϒ(0)
n eu(n2−n) (21)
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where

u = ln
σ0

σ
= ln (1 − ζ0)

−1 . (22)

In the weak disorder limitu ≈ ζ0 � 1, whereas in the vicinity of the Anderson transition

u =
{

ε ln L/` L . Lc (a)

ln(1 − gc/g0)
−1 L & Lc (b)

. (23)

Hereσ is the physical (renormalized) conductivity at length scaleL andσ0 is the classical
(bare) conductivity at length scalè. Lc is the correlation length which diverges as
Lc ∝ (g0 − gc)

−1/ε in the vicinity of the Anderson transition pointg0 = gc.
Substituting the renormalized charge in place of the bare charge in the leading

perturbative results we get

〈〈Gn〉〉 ∼ 〈G〉n e2u(n2−n) n & u−1. (24)

This is valid for cumulants withn & u−1 whereas the universal expression (equation (13))
is valid for n . u−1/2. The exponential increase law for highn cumulants (equation (24))
is similar to that of the local density of states [5, 19] and it leads to log-normal tails of the
distribution function

f (δG) ∼ 1

δG
exp

[
− 1

8u
ln2

(
δG

4u〈G〉
)]

δG & 〈G〉/u (25)

whereδG = G−〈G〉. For weak disorderu ≈ ζ0 � 1 so the main part of the distribution is
due to the lown cumulants and it has an exponential shape (equation (14)). Some very large
n cumulants follow equation (24) and the exponential distribution will have log-normal tails
which appear for fluctuationsδG & 〈G〉/u.

As the amount of disorder increases thenu increases in magnitude, more of the
cumulants follow equation (24), and the log-normal tails become larger. Due to the condition
of validity of the high cumulant expression,n & u−1, the whole distribution will become
log-normal in the regionu ∼ 1. This crossover from the exponential to the log-normal
distribution occurs before the Anderson transition i.e. still within the metallic regime, since
u = ln σ0/σ thenu ∼ 1 can occur forσ0 > σ � 1. This is similar to local density of states
fluctuations [19] where a crossover from nearly Gaussian to completely log-normal occurs
in the metallic regime foru ∼ 1.

Note that the log-normal distribution for local fluctuations originally obtained by the
renormalization group treatment [5] has been rederived directly within the SUSY approach
[20]. It is possible that the high gradient expansion (see note after equation (17)) corresponds
to probing the new inhomogeneous vacuum found in [20]. However the new approach is
applicable only to the weak disorder limit,u ≈ ζ0, and could not describe the distribution
of the many channel conductance.

In summary, using diagrammatic perturbation expansion in the parameter(γ /1)−1,
γ & 1, we reproduced the exponential distribution of conductance fluctuations in quantum
dots with two single channel leads [1] in the zero mode regime,1 . γ < Ec, and
we demonstrated strong dependence on time-reversal symmetry. We have shown that the
distribution has the same shape in the many mode regime,γ & Ec, but, in contrast to
the zero mode regime, the mean and the variance are dependent on the spatial dimension,
the degree of disorder, and the separation of the leads. Using the renormalization group
procedure we have shown that the exponential distribution has log-normal tails in both of the
above regimes. As disorder increases, the log-normal asymptotics become more important
and eventually there will be a crossover to a completely log-normal distribution.
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